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Abstract A collective coordinate method is usad to study the motion of a nonlinear Klein-
Gordon (NKG) kink [1] in the presence of a weak, localized perturbation. An equation of motion
i derived for the kink "center of mass” position which includes the effects of phonons. A
perturbation expansion of these equations shows that through second order, no extended
phonons are generated by the "collision” of the kink with a static perturbation. As a
consequence, the kink recovers its initial velocity after passing through the perturbation
region.

The study of kink dynamics in NKG models has been greatly facilitated by the introduction of a
collective coordinate dencribing the "center of mass” (CM) motion of the kink [2-5]. As the
kink is a coherent, extended object, it seems natural to assign a cnordinate which describes
the motion of its center. Separating out this degree of freedom also removes secular terms
caused by the zero-frequency Goldstone mode (transiation mode) (6].

Although many times introduced purely as an ansatz, a canonical transformation which
utilizes a collective coordinate has been discovered for the NKG class of field theories {7].
This canonical structure allows us to easily derive the equations of motion and leads to a
well-defined quantization procedure [2,3,7,8]. We extend this canonical formalism to include
the effects of a spatially !ocalized perturbation av(x,t) which couples linearly to the field
o(x,t). With 2 as a small parameter measuring tha strength of the perturbation, we consider
Lagrangians of the form:

L-'[dx{%auQQ“O-U(OHXV(x.HdP} . (1)

The equation of motion for the Lagrangtan in (1) is:

®,- 0, + U (® - Avixt) =0 . (@)

The unperturbed equation (A=0) is assumed to have a static (classical) kink solution o¢(x).
Solutions to (2) are further studied via the canonical transformation:

(Xm0, (x-X)+w(X-Xt)+xoxt) (3a)
l‘l‘,(x.t)-1t(>(-x.t)-(M°+§)'1 { p+jdxn(x.t)uf(x.t)}o‘c(x-X) - g (x1) , (3b)
E;-Idx 0, () W'(x Mo-Idx 0, (x) 0, (x) _["xo; (x) v (x)=0 jdxo‘c (x)r(xth=0 . (3c)
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The first term on the right hand side of (3a) represents a kink whose CM moves according to
the dynamical variable X(t). The v field will account for the interaction of the kink with the
perturbation. The major contribution to v will be localized about the kink center and will
have an appreciable amplitude only when the kink is in the region of the perturbation. In
addition, w(x,t) must account for any extended phonons radiated in the "collision”, however, as
will be shown later, for static perturbations, such phonons first appear in the third order
terms of a perturbation series for v in powers of the strength parameter A. The final
contribution to the field is the "background” response x,, that is, the response of the system
in the absence of the kink. The equation which determines y, is (2) with ® replaced by x,. We
approximate x,(x,t) by linearizing (2) to obtain

Yo * X * Ao - AV(X)=O . (4)
%t "%y 0

We explicitly account for this background or vacuum response of the field because unless
the perturbation is turned on adiabatically, this response will be present long before and
after the kink interacts with the perturbation (a situation cften realized in physical systems
[6]). When the kink is far from the impurity, v is zero and the ansatz of a translating kink o¢
plus the background y, is a solution to the perturbed equation of motion to lowest order in x,.
As the kink approaches the perturbation, this ansatz breaks down and the v field begins to
contribute.

The momentum, Iy, conjugate to the field ©, is exprossed in terms of the new canonically
conjugate pairs (X,p) and (v,r) in (3b). The transformation,

{®(xt) Mg(xt) } —— {X(1),p(t), vxt), rm(xt)} . (5)

does not conserve the number of degrees of freadom, hence the last two equations in (3c) are
introduced as constraints. The first of these constraints has the interpretation that the v
f.eld may not account for any translation of the kink since ¢¢' is the transiation mode. Using
.he Dirac formalism for constrained systems [9], (3) may be shown to form a canonical
transformation [10]. With a canonical transformation in hand, we may derive the equations of
motion using the standard rules of FHamiiton-Jacobi theory. Details of this will be presented
elsewhere [10] and here we simply state the equation of motion for the CM collective
coordinate X(t):

1

MyX o —— { [dxe, (-X) (U [0 U Txg x1)] ] + (14K5) fax v () 6 00

1+
Mo

2K J'dx o, (x) [® o) - ZpeX) ] ) . (6)

The right-hand side of (6) has what appear to be dissipative terms. However, in a system
such as ours in which there is no coupling to other degrees of freedom such as a heat bath,
these "dissipative” terms can only represent a transfer of energy between the degrees of
fregedom. In our case, the energy transfer is from the kink CM motion to the "phonon field"
w(x,t). Below we carry out a perturbation expansion in which we show that to lowest order,
no energy transter occurs, and in second order, the energy given to the phonon field during the
colliision is ultimately given back to the kink's transiational motion.



Carrying out this expansion, we have for the first-order equation of motion for the CM
variable:

MOX' - ﬂ/_a(:_'_), ' V(X.t)-J'dx Lo (X+X1) [¢; (x) - o (x) ] . (7

Equation (7) simply states that to first order the kink behaves as a Newtonian particle of
mass M, (see (3c)) moving in the effective potential V(X,t). Proceeding to second order we
have,

y VXL 1 [ 2
MyX = - [1 -ﬁg] —a?-ﬂ‘,-ldxu (0,001 [ (xt) + %, [xeXt] ]

-%-Ide"' (0) 2 (x+X 1) - ZXIdxa'c V' ) . (8)

From (8), we see that to obtain X(t) through second order, we need v to first order. The first
order aquation for v may be written as [10]:

VL) -y () + U [0, () 1w (xt) mxg (xeXt) {1-U"[6 (x)] }

¢.(x) ¢
'—ﬁ,.o !dw x) %o (x+22t) { 1-U [0, (01 } . (9)

Denoting the (inhomogeneous) terms on the right-hand side by i(x,t), we have the following
integral expression for w(x,t):

V(xt)e jdx' Jdt‘ G ) H(x') , (10)

where G(x,x'.tt') is the appropriate Green function 10,11]). Analytic expressions for
G(x,x't,t) are available in terms of modified Lommael fur ctioris of two variables for the sine-
Gordon, ¢4, and double-quadratic potentials [11].

Using the localized nature of x, and the assumotion that U(ec) Is scaled so that
U"[6c(X)] = 1 a8 x —» £ =, one can show [10] that w(x,t: Is localized in both space and time.
Since all sacond order terms Iin (8) are proportional to v, w2, or £patial derivatives of v, all
second order terms in (8) are localized in time, therefore as t— + e, we have MX — -
aV(X,1)/0X. Furthermore, for static perturbations or parturbations which are turned on and
oft adiabatically we have V(X,t) —» 0 as |X| — «. Thus we see that through second order,
the kink behaves as a free particle as t — = o (recall that in zeroth order, X(t)mX, + V,t).
Since energy is conserved, all energy is returned to tha translational motion of the kink.



To illustrate the methods outlined, we present an example in which a sine-Gordon kink,
initially traveling to the right, encounters the time-independent perturbation

.(x-xo)z ) e-(x«xo) ' (11)
In our simulation, the following initial conditions and parameters were used:
X (1=0) = X = -20 , X (=0)aX =3 A=.04 , Xg=5 . (12)

Plots of v(x) along with the linear response x, it generates are given in Fig. 1. The
background xo(x) is localized as it should be for localized v(x). Figure 2 shows the
effective potential V(X) experienced by the kink CM in first order. As expected, the
effective potential is localizea in X. Since to first order the kink behaves as a
Newtonian particle moving in the potential well V(X), we expect the kink's velocity to
increase upon entering the region of the perturbation, then return to its original value
when leaving. The first-order motion for the kink CM is shown in Fig. 3 and confirms this
potential energy analyss.
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The second-order motion for the CM variable X(t) deviates from the first order motion
only in that the maximum velocity (see Fig. 3) attained by the kink is slightly smaller
since some energy is given to the phonon field y(x,t). However, since the final kink
velocity equals the initial velocity, this energy is given back to the kink when it leaves
the perturbation region. Since the phonon field v remains localized (through second
order) about the kink CM, it can be regarded as a (temporary) shape change of the kink
during the collision. It is possible that in third and higher orders, in addition to a phase
shift, the kink will be accompanied by extended phonons and the kink's final velocity will
not equal its initial velocity. However, before proceeding to higher order, one must
examine the approximations made to see if they are still valid in higher order. One point
of concern is the approximation of the response of the field to the perturbation by the
background x,, which is obtained by linearization. These questions along with

appiications of this method to different classes of perturbations shall be addressed in
further publications.
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